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ABSTRACT
2¢7253

In the joint portion of the intertank of a missile, due to the
varying thickness of each part of the shell, the low temperature fuel
used in the tank and the comparative high temperature induced from
the solar radiation may generate a highly polynomial distribution
~f the temperature at thié region, The thermal stresses induced
in this manner are important in considering the thin shell construce
tion of the joint,

The problem 1s solved under the assumption of uniform tempera=
ture distribution along spatial axis of the cylindrical shell and
constant in the whole semi-elliptical bulkhead, The temperature
gradient in the axlal axis is accepted from an experimental result
but with modifications, Solution of this problem following an in-
vestigation based on the membrane theory leads to the fact of the
existence of geometrical compatibility. The edge effects induced
on considering the continuity of displacements and bending moment

give the satisfactory solution for the present analysis, /4é‘£b{’4“
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CHAPTER I
INTRODUCTION

1.1 Preface

In the design of the intertank structures of missiles, the
stresses and deformations are largely influenced by the themal ef(?ct
both from the low temperature fuel used and the comparatively high.tem-
perature caused by the solar radiation during the stage of fill, standby
and flight, The construction of the‘intertgnk, consisting of a bulkhead
and a cylindrical part connected with a skirt, is generally thin compared
with the radius éf curvature of the meridian of the shell. The edge ef- *®
fects of the various shell components produced by the abrupt change of
the curvature and by the discontinuities in the mechanical loading, show
that the joint portion (the so-called Y-ring) is the most important part
in the design. The temperature gradient may have an important effect
which is then of the same local character as the effect produced by the
applied mechanical loads.

In the present analyslis, the bulkhead has been taken as a semi-
elliptical shell in revolution, and the intertank skirt is a corrugated
skin cylindrical shell as shown in Figure 1. The temperature distribu-
tion, considered to be in the steady state and constant over the semi-
elliptical bulkhead, has no spatial variation other than that in the lon-
gitudinal direction. An investigation based on the membrane theory has
been worked out in Chapter II for the temperature indicated above, and

1
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the problem has been solved for the proper boundary conditions. The so-
lution of the edge effect is given in matrix form in Chapter III. How-
ovor, ho mathematical solutions for the influence coefficients have been
derived, since it is understandable that such materials may be found in
the books concerning problems of elastic foundations by M. Hetenyi [1]‘
and S. Timoshenko [2]. The numerical procedure in Chapter IV together
with the discussion in Chapter V may present a better understanding of
the entire problem in question.

We employ here three basic assumptions (3}s (1) The temperature
is determmined independently of the deformations of the body. (2) The
deformations are small. (3) The materials behave elastically all the
time. These items simply state that the coupling between the thermal
field and the stress field may be omitted, that thﬁ displacement grae
dients are sufficlently small so that no buckling can take place in the
present analysis, and finally, the temperature changes and the stresses

will not be too large.

1.2 General sketch of the joint

The intertank, as described in the preface, consists of a bulke
head and a cylindrical part connected with a skirt., The bulkhead, which
includes the cap portion with uniform thickness and the variable wall
thickness knuckle part, is a semi-elliptical shell. The cylindrical part
may be divided again into several sections. The numbers I, II, III, IV,
V, VI, VII, and VIII have been used in the succeeding chapters represent-

ing the different parts in the following figure.

*Numbers in brackets denote entries in the List of References.
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Fig. 1.--General sketch of the joint (Y-ring)

Fundamentally the entire process of solving the stresses problem for the
intertank consists of threoe stepst (1) determination of the membrane
stresses due to the temperature load, (2) determination of the stresses

due to edge loads, (3) superposition.
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CHAPTER II
MEMBRANE THEORY

2.1 Introduction

The general sketch in section 1.2 shows the geometrical configu-
ration of the intertank. The thin shell construction together with the
assumption of small deflection theory enables us to adopt the membrane
theory as an analysis. For each of the different parts in Figure 1, the
thermal stresses and displacements induced from the thermal loading,
which i1s imposed by the lonéitudinal varying temperature distribution,
may be obtained from the lincarized membrane equat;ons derived in the fole-
lowing sections. The arbitrary constants involved in the equations for
each independent different part may be evaluated upon restoring the con-
tinuity of the parts investigated alone, and upon the imposing of the
boundary conditions for the whole intertank.,
2.2 Thormal stresses and displacements in a thin-walled circular

cylindrical shell with non-uniform wall thickness and longitudinal
temperature variation

The analysis of this section deals with the shell part II (see
Figure 1) and also, as a special case of it, with the parts I and V.,

Considering that the variation of temperature takes place only
in the longitudinal direction and that the uniform expansion of the pe-
riphery is not subjected to any constraint under the thermal loading,
and in as much as the shell remains cylindrical (cefe2.3), only axial

thermal stress can be induced.
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A studying of a general cylindrical element shown in Figure 2
leads to the equilibrium condition in axial direction

v—a&\%{duhaé‘)o | (1)

neglecting the higher order term, it gives us
d(fe)y=0 . (2)
that is |
S‘ o~ = qv : (3)
8‘ and 0 are both functions of ¥, whereas the integration constant

g, may be determined by the boundary conditions imposed (see section
2.6). |

We have the stress-strain relations 3

24U n
b= n "5 T T | “a
-W M 4
Ess Ro Esen TXT e
Ers =g =0 . (#)
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Thereby it is understood that no displacements along the circum

ference may occur. Equation (h)b immediately leads to

A Roe '
-—————W °¢ o
w E S +oLTA (5)
and(lb)agives
= G- + | LT dx + : (6
U j £500 dx j Tdi+ g, ’ k (6)

where 3& may be an arbitrary function of 4 ; however, a close examinatlon -
of (b,)c reveals that it does not depend' ond. That is, fb is. a constant.
By substituting equation (3) into equation (6) one obtains

U = _g'_r._'__? do + ocjx'r’dx + 94, (7)

Ed S

+

Again, 3& may be defined by the boundary conditions.
"~ From (5), we have the slope of the shell in the axial direction

in the present sign convention as

e dW o rqp ATy MRe _d_ & 8
9 dx (LR )0 2 G ) @
The second differentiation of wis
d*w d*T _ MR & (9)

xR, d x* E d x? (S‘oo)

dx*

The membrane displacement w is then associated with a so-called

membrane moment

M=p 4W

d x*

d*T MR, d* 0~
..D[MR. d'X." - E dx,_ ( S(x) )J

(10)



where ' 3
ES - | -
D 22 : | (11)

is the generally variable shell rigidity.

2.3 Themal stresses and displacements in a constant wall thickness
circular cylindrical shell with longitudinal temperature variation

Applying the same considerations used in the previous section,
we conclude that the stresses are in the axial direction only. However,
in the present'case of the shell parts I or V (see Figure 1), since the
wall thickness is uniform throughout the whole portion, the stress under
consideration is constant. | We know immediately from equation (1) that

20 v
> 4x9 0 (12)

which has the solution
where 63 is another constant of integration.

The stress strain relation may again be written (c.f.2.2)

S Tl kel aw,
w M :

Ess = R - ES o+ LT (14),
AU - |

fus=55 =0 o aw,

(14) a Decomes

M(JL).—.-._E"_E\_,X-.-och dx + 34 | (15)
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It is clear, from equation (14) , that g 4 will not be a function of 4 .
By substituting (13)

Ux) = —ng: % + oLJ”TdJL + 9 (16)

the displacement in the X direction may be obtained

w=- ’”‘ 9y + AT R | )

The slope along the axial direction and the bending moment gen-
erated from the membrane displacement {) are given by the equations (8)
and (10).

,

2.4 Thermal stresses and displacements in a cylindrical shell wit
corrugated skin subjected to longitudinal temperature variation

0ss d
< trsdx | (O TZ2dx)ds
0x
‘ OzxdS Gl a dx)da
2= b — — .

Centroid ; y(0'£3+ b;;”s ds)dy

of the

sheil | (&;s+3£idx)dx

Fig. 3.--Coordinate system for the corrugated
skin and the general element
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In the cylindrical shell, the equilibrium equations for any arbie-

trary cross-sectional shap'e while subjected to no external loading other

than heat input may be written

0%« + > 0xs
A% 9

-( | _ (18)

2055 20 _ g, . a,

+ (19)
28 0%
05 =0 ., ' N (20)

It should be noted that (x¢= sx.' indicating moment equilibrium is
already taken into account.

The equations give us the arbitrary solutions immediately.

0%s = 'F| o _ . (21)

%c— — oo + f, (22)

vhore ‘F. and 1{: #1717 not be finection of ¢ , but may be function of 4 .
G DY e el s s pemdirement that there 1s

no net motienh &huih ahj diwivirai axis|{4], Furthemore, since the shell

part VII (see Figure 1) is symetric with respect to the longitudinal

axis of the shell, no net shear may be transmitted across a transversal

cross-section. Thus

§ 03 Ry Oos ¢ d5 =0 . )

3
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§0‘ix R.Sin¢d8'-=0 | ) ' (24)
§ , |
éo“écs R.AS =10 o (25)
§075 asy =0 . (26)
J

where R, the radius of curvature of the meridian, is a function ofd .

However, in our case the'integral of (5y over the cross-sectlon
will be constantj and since there is no variation in thickness of the
shell, equation (22) mist have

ofi L - ’ (27)
03 - '

Hence it is clear f, will not be a function of x or 4, and (22) may

then be written as

while substituting (21) into (26), and in accompaniment with (27), we

have _ : _
5§ds=o0 | - (29)
3
Because of §>d5 % 0 it follows
y (30)
| =0
and
Oxs =0 . . (31)

For convenience we will then denote (-

XX by (f’. The following

condition will be true by making use of (28)
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éO"dS = 35 | | (32)
J

For consistency with the previous notations, letter ﬁ has been

used rather thannF . g 5 is a function of temperature only, which ma}"

be determined by the boundary conditions.

Still, the quantity g~ may have variation along  in viewing

the equatims (18) and (28).

chosen in the present case ensure us that the displacement along A will

However, one should realize that the particular coordinate system

be zero, since the uniform expansion may only take place along the direc-

tion of R, Besides, knowing that while in the boundary, axial dis-

placement [{ will not be a function of 4 » we then have the following

rel‘ations
gi'——'E'S‘ ™~ oL T | | (33)
| —‘% --—Eig— o~ + T (3)
or
um:—g%"‘ijox”i*?é : (35)
where

ﬁé is a constant and

w é— /E‘go» + LR, T | (36)

®
But the condition for -33- to be zero everywhere enables us to
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write
26~ | -
LN | ' (37)
? 23 ‘
For‘uﬁifomity, We put
I = = : : 8
\ 0- f v g? " : , _ ' (38)
B Equatins (35) and (36) may be rewﬂtten as
W,=<_ﬂ_v_,%+o¢j Tdx + 95 (39)
TR o
. | Mr{ | _
t g W=-"& 37 + LTR, (40)
i Again, the rotation of the tangent of the meridian and the mem'-‘
brane moment genei'ated from the membfa.ne displacement W may be obf.ainqd

by using the same expressions as (8) and (10).

T

2,5 Displacements of an elliptical head under uniform temperature
distribution

T T | L | L]
i : :
.
—— ]

. FAig. 4.-~Coordinate system of the elliptical
head and the convention of signs
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The following equations have been derived according to membrane

theory and assumption of small displacement by neglecf.ing s&ne_of the
higher order terms [5]

e 45 * v S
f—r'c— [- U s;n@_+ W Cod (3] " | S (42)

and the stress-strain relations

1

E,--—é—-w-w’m +ol T ' @)
bom g (GG—Hm) + AT ' (1)

we shall consider that ths sdges of the shell are free from

restraints (i.e., O =0z= 0), hence the above equations take the fom

-_'R-[_:%’."WJ a7 | )
r'{ [—wsiné-i-wcug].—ocT (46)

 On eliminating () from the above two equations, one obtains

—i—;--r(ATanp = %T (R~ R,) (i)

the general solution of which becomes

U= T Coj@[j-ﬁ'—;—g—‘-d@-!- C] (48)



L
where C is a constant of ’integration.

By using the following notations

K=—%— >

r=[K-(k*=1) sin’e ]"L" = [i+ e )coa’(i]-i'.

R,=Kar
Ry,= KAV , (49)
Rs Cod'@ Lo
‘1=J“T b - l)Sm@-V"‘
equation (48).'becomes | g
\ , , o
- V"V' A c
‘,M—O&TCMG[KOL[CM@de ] (50)
Again, this may be simplified
k==l T Cod P [RACK-DIV- 3ing - 01 S (s1)
(51) can be evaluated exactly
N=—ol T Cod@[b(ﬁ‘-l)\)’&in@--c] (52)

Since we shall deal later with a displacement component 2 which
is perpendicular to the axis of revolution, viz.

A= —USinB+ WCAaP - (5)

C will be dropped out automatically, so we may write

UW=—aT R, + h TanC (54)
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Eliminating —g%— from equations (45), (47) ylelds

W= TR+ UTan@ - AN o 59
 and by substituting (5&) - s
W= xT [ R.=bCk*~o-sin*e] o (s6)

The angular deflection of the tangent to the. middle surface of

the shell can be written as

U I dw .‘ :
- - : (57)
e Rl Rl d @ '
by subs‘r;ituting (54) and (56) one obtains
8=0 | - | 4 (58)

This is true as long as T is constant which was assumed for the

elliptical head, -

2.6 Solution for the boundary condition
Since there is no constraint te the free expansion or ocontraction
of the tank, the mean value of the themal stresses across the cross-

section must vanish. From equations (3), (13), and (38), we have
O*'=ﬁ.=qsag7=o (59)

Furthermore, since the longitudinal displacement must be contin-

uous across each of the joints, equations (6), (15), and (35) lead to

9. =0 (60)
] .
Ga= [} 77 du | (&)
, v 24
%‘“ ocjog Trol% +°<'J.X 7 dx (62)

where [ n ,‘ }7’ denote the length of part II and V respectively. TI ’
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TV state the temperature distribution of these two parts.
However, we are not interested in the displacement‘(,{' which 1s
defined by the constants ?‘, ’ 34 , and gé . |
By using equations (5), (17), and (36), the radial displacement

in the cylindrical shell for all the different sections becomes

And the rotation in the axial direction w:i:ll be
- dT '
N (P (64)
f-—o R, |

The displacement 4 (c.fop. 14) and rotation § at the joint for
the semi-elliptical bulkhead are obviously not the same as those from the
cylindrical shell by comparing equation (53) with (63), and (58) with
(64). |

The difference of these‘ may be interpreted by the edge effect-s.

of the mdividual‘ shell parts as developed in the next chapter.

a
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CHAPTER III

EDGE_EFFECTS

3.1 Introduction

Due to (a) the abrupt change of wall thickness, (b) the discone
tinuity of the curvature of the meridian, and (c) the discontinuous gra-
dient of the themmal loading, in certain regions, where continuity of the
structure cannot be maintained by membrane forces alone, forces and mo- |
ments will be induced whose:influence is'of/local chafacter. These edge
loadings, as they are usually Ealled, are induced in ordef to make the
rotations and diéplacements of adjacent walls con£inuous.

With the continulty of the structurs in mind, one may determine
the unknown redundance by imagining the shell to be physically separated
at the discontinuities. The edges at each cut, in general,rwill have
different amounts of displacements and rotations. A gap is said to be
exisfed, if the membrane stresses alone are considered., To restore the
continuity, suitable edge moments and edge shears have to be induced, and
the gaps at each discontinuity will vanish.

Having'expression for the rotation and displacement at each edge
of the discontinuity caused by unit edge>shear and moment, it is possible
to calculate the edge displacements and rotations of the various shells
in tems of the unknown edge loadings. The geometrical compatibility re-
quires the displacements and rotations at the edges of adjacent members
to be in equality. A set of simultaneous linear algebralc equations for
the redundance yilelds the solution for the unknowns.

17
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In the first part of the next section, Figure 5 shows the complete
unknown redundance, the relative members, and the gaps inducéd'imaginar-
ily. Given in accompany are the compatibiiiiy equations which lead to a
general formulation.

Generally, for N} compatibility equations, a system of linear
simultaneous algebfaic equations involving »© unknown redundance is ob-
tained[6], Howéver, instead of solving these N simultaneous equations,
a step by step procedure has been worked out in the present analysis.
The advantage in doing so will be examined later.

Furthemmore, consider the abrupt chﬁnge of wall thickness, the

existence of the membrane moment

d*w

Mpaoc

(65)

t

may have a discontinuity at the joint while membrane stresses alone are
considered, thus vidlating the moment equilibrium across the cut at two
adjacent shell members. To restore the continuity, a ﬁoment distribution
method which induces the suitable edge loadings at the joint has been in-
troduced corresponding to the step by step procedure.

Once the unknown eage loadings have been evaluated, the stresses
at each interior point of all the members may be readily obtained by us-
ing stress diagrams plotted for individual cases and the displaceﬁents

and rotations may likewise be computed from the corresponding equations.

3.2 Analytic formulation

Consider the shell shown as Figure 1. We may use the hypothesis
touched in the preceding section, that is wherever a change in. thickness,

curvature or temperature gradient, the shell is imagined to be physically
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Fige. 5.--Unknown edge moments and edge shears
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soparated. Consldering the membrane stresses alone, the adjacent edges
in each cut will have different amounts of displacements and'rotations.
The gaps occured in edge displacements and rotations require the intro-
ducing of edge loadings. To preserve thg contingity of the structure,
the edge moments and edge shears introduced should be suitable not only
for closing thé gaps but must also be in self-equilibrium at each cut.

We adopt the following notations by referring to Figure 5.
oL i | == The deflection o/} (i.e., displacement W if { is odd
and rotation {} if ( is-even) due to a unit edée load
X J = | . The deformation takes place at that side
of a cut which is indicated by an unprimed capital let;
ter (1.0., the letter A" if i = 1, 2; the letter "B"
. Af U =3, U3 the letter "C" 4f U = 5,65 4+ o . the
letter "G" if ( = 11, 12. One n;ay realize that "B"
‘ and “D" are consistent with each other, since they in-

dicate same edge but different cuts of part II).

B4
c. .
[

Unknown edge load. This is a shear force if j is odd

and an edge moment if J is even.

/
The deflection ©&(; due to a unit edge loading

.
[ SN
i

which takes place at that side of a cut indicated by a
primed capital letter. The meaning of L.and J is the

same as before.

®io = The similar quantity to & ‘;f but due to the thermal

loading (membrane stresses).

’

o0 = The similar quantity to oL(,J but due to the thermal

loading.
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g;'—o( = These quantities are called "influence coefficients."

_ They give the relative deformation across 'the adjacent

edges of a cut due to unit edge loadings.

/ .
g'ia =0 =0 i0 =These quantities give the relative deformation across

the adjacent edges of a cut due to membrane stresses.

For each cut, the geometrical compatibility requires that the dis-
placement and rotation be continuous at the joint. Figure 5 leads to

EwWia=E Wia/ EBa=ED A

CWap = EWag E 6up — E By

EWzé-\ EwWso=EwWip’ " E 9;,=5919= EB,p

Fwse =EWse  EBe= E By )
EWoe =EWee'  Efap=EOp
EWepmEvWpp FOcr =E O5p/

E Woer=EWsg Foeq = E 04e’

where the subscripts are denoting the cuts and edges at which the deforma-
tions take place respectively.

Generaily, these 14 compatibility equations together with the

. following two conditions at the jJoint DB-D'B' may be solved for the 16

unknowns.
X;P\Bo,"' Xq R.p’= X;RE ‘
XéR.i"*'X]o ° -K4 R,o

7,
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B, . pl ’ .
where {7, R, s R, are the radius of curvature of the middle
surface of meridian at the cross sections B, D', B respectively.
! B o/ ,8
Knowing that R,E ‘Ro=1,y Re : R, 1 We may write
X§ + Xq = X 3
‘ | (67)y
X (A + Xlo = X 4

The expréssions for the compatibility eéuations are easily ob-
tained by the use of the edge coefficiel;lts G(t} ’ O(c:,i/, oao N D({a, and
the edge loadings X s as explained previously.

For a simple example, one may take for gap 1, or cut A-A'., Ac-
cording to the linearity of shell theoz;y, the displacement w may be write

ten

Win =0y X, + ek, + %o (68)

+

The cylindrical part I itself is assumed to be long enough so that the
cut A may be imrestigated independently of any other cut, if any, which
then has no reaction on A. ' '

Similarly

/ / ! / / /
M'A = dﬂ X1+.OCIZ.4 X&+°<'3X3’+d4'4X4+q'0 (69)
where now the terms containing X 39 X 4 describe the reactions from
the lower edge.

. It is necessary that
W = | o (0)
W; A 1A — 0 . :
for the continuity of the displacements.
Equation (70) may be written

(L= DX+ (oc»z—“vﬁ)Xz*' (0(,3—0(,,3')25

y 1
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In the notation of influence coefficients (c.f.p. 21), it becomes

8|X,+ S\.z.xp*'Q:sX;*“ Qn.aXa"'g\,o“O | (72)

It is clear that equation (72) is the result of the first compate

ibility equation in (66).

The compatibility equations will in general lead to N simulta-

neous equations for N unknown redundances, if equation (67) is implicit=

ly involved.
By substituting with equation (67), equation (72) and the sub-

sequent equations may be written in the fom
ZS‘L&X- + 8, =0 (73)
¢ ¢
In matrix formm, this becomes ;

AX+ A,= 0 | ' (74)

where A is a NX N matrix, the vector X denotes the N unknown re-
dundances and Ao is a column matrix containing the tl'_xermal load.

(74) has the solution
X=—a" A, ' (75)

If C;, is the circumference of the shell at {, , and similarly

C'J the circumference at d‘ » Betti's [7] work theorem leads to

C;S\¢J=Cl'$\d;( " - (76)

In case for : _
Co=C | (77)
which is, for exampie, fulfilled by all cylindrical members we have
Qo= Qo (78)
¢ ¢V -

and that is known as Maxwell's reciprocal displacement theorem. Equation
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(78) states thet the matrix A is symetric in that case.

However, in spite of the above formulation, the method we are
employing here in the present analysis is no longer a straightforward
form of the NX N matrix solution as indicated in equations (73) and
(74). The difficulty is in the fact that part VI, as shown in Figure 5,
cannot be treated as a beam on elastic foundation as longitudinal stirips
of the cylindrical wall usually can be, because it is formed by individe
ual pleces of clamps connecting the cylindrical part V and ihe corrugated
skin part VII. The simple beam with variable thickness cannot be con-
sidered as shell construction. The applying force or moment per inch
of the periphery at one edge is no longer in self-equilibrium as it is
in a shell. Equations (73) and (74) fail in this case as one may realize
that odljd and ﬁé A » Which represent the edge coefficients at gap 4
and c(la ’ OGlur which represent the edge coefficients at gap 5 for
the part to be taken as a free body, do not exist.

The requirement for the equilibrium of part VI forces us to con=
struct an equivalent step by step procedure for solving the whole prob-
lem. \

The basic idea is to close each of the three systems a, b, ¢
first. It is then possible to obtain the displacement and rotation at
B,B' and D' for a unit shear or moment acting at each of the three edges.
The moment and shear arised at the joint of each system will be known in
the process for calculating the edge coefficients by taking each system
as a continuity piece. With the edge coefficients for system a, b, ¢ at
hand, gap 2 may then be closed by using the compatibility equations.

By this procednre?.the equilibrium state of part VI may be ob-

tained by considering parts V and‘VI as one piece whenever the edge
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coefficients at F are needed, and by considering partsVI, VII, and VIII
to be one continuous piece whenever edge coefficients at E' Are needed
(cefep.44).

We demqnstrate here the general considerations and basic equations
involved in this step by step procédure. However, it should be pointed
out that no analytical formulation for the edge coefficients will be pre-
sented in this section. The bomplete solution in the numerical form will
finally be given in the following chapter,

The procedure may be systematized as fbllows.

(1) Close the gap at the far ends from the gap 2 for each system.

In detail, the compatibility equations are:

For system a, gap 1
EW,A = EM/IA" ‘ : K
E94A=591A' - - s

For system b, gap 3

(79)

FWsc =EWse ‘ . (80)

FO3c =1 03¢
And for system c,. gap 6

EWGG =L Wéq' | (81)

Efsa=F0¢& | |

It should be understood that we are now téking the relative dis-
placements and rotationé at the cut we éhqose as a load tem (i.e.,é?io R
Any edge shears and edge moments appear in the compatibility equations
should relate to this load term only. Viewing this, each of the above
s&stematic equations may be written in a 2 x 2 matrix form, since 1t is

clear from the above statement that the edges B, B', D' and F' will be
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considered ﬁo be free at the present time.
We have for gap 1 the equation
87! 87& EZI, g}o ' .
-0 (82)

S zz TS

Here X", X, are contributions to the resultant edge effects.
The influence coefficients épii are the same as described pre-

viously and S\" ’ g}b are the relative displacement and relative rota-

: tion,’respectively,'at gap 1 in considering the membrane stresses alone.

Equation (82) can be solved

);" SE: g}z N Sfb
X.:.,J B — "9;, g\;z 9;0

For gap 3 and 6, similar equations as equation (83) may be estab-

(83)

lished.

It should be noted further, that in élosing the gaps 1,.3, and 6,
some additional contributioﬁs to the displacements and rotations at the
edges B, B', and F' will be induced. These effects have to be taken into
consideration later.

(2) In closing the gaps of system c, one has to consider V and
VI as well as VI, VII and.VIII as separate continuity pieces. Since VII
and VIII are of the same cylinder it is possible to take it as one piece
of a semi-infinite beam on elastic foundation. The edge moment and shear
then occurring at G and G' from the redundance at edge F' may be obtained
from the equations of beams on elastic foundation [3].

In taking V and VI as a continuity piece, it is necessary, ac-
cordiﬁg to the present hypothesis, to take edge D' as a free édge while

gap & and 5 are treated.
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The edge deformation coefficients at the edge F for pleces V and
VI will be takgn care of in the next chapter, |

Gap 4, again, may be evaluated by an equation similar to equation
(83) by considering VI, VII and VIII as one piece. The effects on gap 5
and 6 from the edge loadings X ” y and X ; where the prime denotes the
fact that the edge quantity z’j is only part of the final value X } are
readily obtained, once the edge moments and shears at each cut for edge
unit loadings at E' have been prepared.

The edge deformation coefficients for any such combined piecé xﬁay

be computed with the same notion as is shown'with the following example,

where only the shear force X 3 is acting at B.

— - ——— —— ——— —— i

- / ' .
P} ‘x. z
e_—:::A“' Aﬁ 15!

Fig. 6.--Edge coefficlients for combined pleces

Small 7k means the edge effects from the loading X3 . A similar con-
figuration is valid in case the edge moment _X4 is acting at B.
Although Figure 6 shows the gap 1 only, it is true for a'ny other system.
The relative displacement and rotation over the gap 1 will now be
displacement and rotation at edge A' from the unit shear X =1
The geometrical compatibility leads to the result -

% : ‘S\ll 9;2'-' S}o
Ya ‘=— 61:4 5\11 80 o - (8w)
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where é\; 0y é‘ 20 are from the applied unit load X3==‘l only.

The edge deformation coefficients for the system a become
A .
Oyy = K33 | + Oy X1 + 2%y (85)

where superscript a means system a as one plece is considered. .
Similarly, for a unit moment X 4= | s ‘the 'edge deformation co-

efficlents for the system a become

.0624 =olga |+ Kygpn) + Kag Xy (86)
where /x,* , %;Z( means the edge effects from the unit moment X = | at
Bor D. -

With the general formulation, edgé effects for any combined system
may be evaluated with the help of equations (85) and (86).

(3) With.the continuity of each system in mind, we may try to
close gap 2, the joint of the three systems. The c;ompatibility equations

EW:Q = EW’-B’ ' Efzp = E B2p’
_ : | (87)
EW:B=EW1D’ EGZB"EG:D'
together with
/
_X3/ = X; + X? _ . |
£/= X4t & (88)

which may refer to (6_7)5. Where a prime is to differ from the final
~ value. Equation (88) leads to a 4 x & matrix equation, which may be solved
for these unknowns.

However, for the sake of simplicity, we will deal with 2 x 2 matrix
equations only.

The continuity between system a and b may be restored first.
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e ————— e — e —
—__
| -
1, |
z, . .
? 4_’_1 ,/.L =l e 4
%, —
=X 4 Y,
. 4 Xq/=x3
Fig. 7.--Edge effects for the continuity of the
displacements on the systems 1 and 2
We have .
S\GIC alc ZI : S\Q,c
3 34
3 J 30 _
g\a,c 8\ ) X, ' s\a,c
43 044 4/ | V40

where the superscripts 2, t represent the influence coefficients for

system a and c.

Again the primed quantities indicate that the unknowns X ; are
only parts of the final values 'XJ" .

One may then obtain the combined deformation for the closed
system a and ¢ which we shall denote by 'ﬁ and | for displacement and

rotation, respectively, 1i.e.,
a Qa / D O ==
oo+ oty Xf +23e Ba = ¥
o o\ ! Qa X / = r'
K ge + K43 B3 +Xaa &g (90)

where superscrip;c a means system a, and{ , } are the displacement and
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rotation for the now continuous pleces system a and system c.

The systems a, b and ¢ may be closed by introducing the edge
loading solved from the following equations

h Y
R - —_ o
I
/"i \\ / b
4 X’ ,tern
W /_\4\ /'/'X ] sr
X, | 7%
Sy:tem 7 x;n - System ¢
e

Fig. 8:--Edge effects for the continuity of the
displacements on the system of a, b, and ¢

n b b - b C L 4C o
XS 0‘35 0(36 ! {30~ V-39 X’-u4ﬁ X0
' b b b ¢ o "
.y a5 46| | oo -1 -0, Kg—o¢ X, (91)

Where superscripts a, b, and ¢ are for the systems a, b, and c respec-

tively, and double prime indicates the quantities arised are contribu-
tions to the unprimed system.

N,

arom

EWap~ =E,Wzb Esz"‘E@zé

E W2p' = E Was EQ.p” = EB2s
| (92)
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we have
Xa)_ tsg e [0 oLs 23 BT
Xl‘o' °~’4q °(4uv> d:-* o4 ( X :.) ._
and o
X"f'. | or3,+o£,b5 o +°( =l o(;; el;4_ X}’ ;
2o | o4yt v% 7 olgyrelyy] | oy “43)"( XZ) 7
Write ,
o(,?-l-o(_;‘z- d:4+°ﬁbé gy °<0;4 o an e
% b a %] = ( (95)
0(434- 9 44-&-0(46 sy Olaa au Qs

By using (95), (92) may be rearranged with the substitution of

equation (94).
( 21;
xi
c b c c =l
0(3:- +O(;7‘ a|'+°(3L|oj Q) 36 +°<'37 qll"' d—’“” a“ o(b-G
(4

(96)

45t % "+°(4u)qll olai 47 Gt um Ou ot

One has the complete solution for the edge loading of gép é by

summing up the edge effects arised at each occasion treated previously as

X3 nZ;, + Zg
X4=X4+Xa
Xe= X%
X;=X¢
X =X, +X"
9 7 1 (97)

—_ Iy "
XIO— .X,o+ .Z]O
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343 Moment distribution

In considering the membrane stresses alone, the existence of the
second derivative of the nommal displacement w with respect to «~ may
generate the intrinsic membrane moment

M-p Y - | (98)

where ' 93
D= E

12 (=) : (99)
and S\ thickness of the shell.

Vherever 9 has a sudden change over the joint, the intrinsic

~ bending moment M will be a step function at this point. To restore the

continuity, the shell may be imagined to be physically separated. One

may release the unbalanced moment N at this edge by applying a moment

in equilibrium with the unbalanced one. The displacement and rotation

caused by this applying moment may form an additional result over the

relati;re displacement and rotation at the gap, and the equation obtained

in the previous paz.'tA may be employsd readily to close the gap. The edge
moment introduced £ogether_ with the original unbalanced one and the edge
shear indﬁced may form an equilibrium system and continuous over the
point that physicially separated.

However, in viewing the process itsellf brings to a complicate
situation when the joint is no longer simply connected, while to release
the unbalanced moment means to tra’nsfef the problem into the form which
may be solved by using equation (96). A xﬁoment distribution method is
introduced as the following.

Suppose point A has a step function of the intrinsic moment Mos

applying a moment M which 'is physically balanced with the original
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moment.

Introduce now the cut.

<’

M’\\ '\X",
I \ = I,
: = | | e—] e’l ~
. / :
W

’

Fig. 9.--Edge effects from the applied moment

where the moment indicated by the dotted line is the intrinsice unbalanced
one.

The fbllowing conditions must be satisfied.

!+ 3L =M, o o
. !
g\n Xy Xn Xl”
A / X:f' =0
, Qll oAy, 9% XII/ (101)
b3

by substituting (100), equation (101) may‘be solved

.2(7 é:r 812 ! CXL)Z
- 4 Mo
XIZI S\z' g‘zz X 22 (102)

Consider the case for gap 2. It 1s possible to use the same ap-

proach by applying a moment M which will be physically equilibrium with

the sum of the intrinsic bending moment over edge B, B', and D'.
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4 p’ -
‘ 8 , Xgm xm. ]
Xm ‘—/
/ (o .

Fig. 10.--Moment distribution for the Jjoint
. conmecting system a, b, ¢
Again, the moment indicated by the dotted line is the intrinsic unbal-
anced moments.

It is necessary that

" 3 _ ol i ' o
3 L\ L 73 2 ( ° ) | (103)
" f /4 ) .
-XA- .Xﬂé i(; AA°
furthermore, .-
- EWap = EWap EQLB°E9‘B'
EW.p = E Wao' EBas = E B2r | (104)
On examining equations(103) and (104), we have
m
i3
W
% a ot
|0 ot Sl [z o5 1] (%53 34| |7
= + ¢ ¢ + b O(b a o{a. 10)
0 | o4q %4t 45 46 ™y ¥4 (105
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The 2 x 2 matrix involved in this process is nevertheless a sime

ple form of calculation. Besides, the solution for each step is not -
only easily checked, but also ﬁhe-influence for each step to the whole

analysis may be seen clearly.
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CHAPTER IV

NUMERICAL PROCEDURE

4.1 Description of the construction of the joint

The solution has been carried out with the following gaeometrical .

characteristics:

1. The semi-elliptical bulkhead.

4 |

(40 -

)

113

Fig. 12,--Construction of the semi-elliptical bulkhead

2. The cylindrical part of the shell may be divided into several .
parts, the upper cyliﬁdrical shell and the lower intertank skirt. The
upper part itself consists of two cylinders one of assumed linear thick-

ness variation from 2.32" tov0;8" and another cylinder reinforced by stif-

37
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- fenors with equivalent thickﬁess from the moment of inertia of 1. VWhile,
the lower portion consists of a plain cylindrical part with a thickness |
of 1.l (cef. 2.3, 2.4). The radius of the cylindrical shell has been
taken to be the same as 198" throughout. |

3+ The boundary condition is assumed-to be the same as described
in‘section'2.5. ‘

L, ol=3x IO"6 , | E=10 0% 106 + Material is aluminum,.

5. Tehperature distribution is illustrated in Figure 11; tﬁe inﬂ
semi-elliptical part has no temperature variation.

6. The reference'temperature T; is taken to be 100° F.

4,2 Fdge deformation coefficients

(1) System a
We consider a general member of this system subjected to edge

moments and edge shears at both ends.

C—

P.
— |

Mz MI 'P’

Fig. 13.--General'member and sign conventions
for the edge moments and edge shears

had

The sign conventions for the edge coefficients are aécording to the ap-
plied edgé loadings and the signs for the displacement and rotation.. In
the following whenever the edge coefficients at the right of a cut are :
needed, the coefficients obtained are from the applying edge loadings at
the left hand side‘of Figure 12, according to the sign conventiohs for

the displacement and rotation. 4And the edge loadings shown in the right
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hand side of Figure 12 have the same sign to the edge loadings applied
at the left hand edge of any cut. ‘

The edge coefficients in the plain cylindrical part of the'upper
cylindrical shell (part I) have been treated as semi-infinite beams on
elastic foundati§n which is due to Hetenyi‘[9].

The coefficients bslow are for the edge loadings at the right
hand edge of part I, and the edge loadings have the same sign as the‘edge

\

loadings figured at the right hand side of Figure 1i.

W, 0.23800 | -4 0.21634 | -4
(106)
9, ~0.21634 | -4 -0.39330 |-5

the subscripts for deformations indicate the edge shown in Figure 5.
For part II, the cylindrical shell with the assumed linear wall

thickness variation, the hombgeneous equation of the bending theory reads

8]

a* oAy, EW . -
dXz{Dax‘>+ RT 0 (107)

where {{ois the radius of the cylindrical shell, S‘the variable thickness
of the shell and D the variable shell rigidity. Equation (107) can be
solved by means of modified Sessel functions [9}. | -

The solution from digital computer led to the following results
(see Figure 13)

Py ¥ R My

Vg o.164| -3 0.163 | -4 0.104 | -3 go.1u5j 4
63 o.163| =4 =0.243 |-5  -0.207 | -4 0,190 | -5

Wyr | =0.104 | =3 -0.207 | -4 -0,284 | -3 0.261 | -4 (108)
10

v | =0.185 | <4 -0.190 |-5  -0.261 | -4  0.4k0 | -5

%0.23800 | -4 read 0.23800 x 10-%



40

In order to conform this linear assumption of the thickness var-
iation, an analogous method of model test has been accomplished.' The re-
sult from a Moire model test which simulated the finite beam on the elas-

tic foundation is as follows'[9]
¢

P M P M

1 1 ‘2 2
0.189 |~3- 0.167 [-u 0.101, -3 =0.150 |-4

!
W5

6g | -0.167 | -4  -0.244 | -5 '~ -0.200 | -4 0.189 | -5

Wye| <0.101 | -3  -0.200 |-u -0.237 |-3 0.259 |-4 :
‘ ‘ (109)

&p1| -0.150 | -4  -0.189 |-5 -0.259 | - 0.439 |-5

On comparing (108) with (109), it can be seen that they are in
good agreement. In what follows the values from equation (109) will be '
utilized.

For the whole upper cylindrical part, the deformation coefficients

caused by the edge loadings

Fig. t4.--Edge loadings.on system a

riay be obtained by closing the gap in between the Jjoint of part I and

part II imposed by the applied unit edge loadings. The quantities com-

-

puted from the equations (85) and (86) _are:

Py | iy |

W 0.14300 | =3 , 0.09540 -4
65 -0.09540 | -4 -0.12448 |-5
Wy -0.01017 | -3 -0.051140| -4




. thickness, E the modulus of elasticity, R m the averaged radius of cur-

| I
N -0.014211 | -4 0.00588 | -5

(110)

(2) System b
In studying the edge coefficients of the knuckle part, a Geckler-
type approximation has been used [9]. The solution of the governing

equation

2 3
d (Dde

Eg dwn .
R 5 _——d-53 0 (111)

Rm dS$ - . \

contains Kelvin functions. Where § is the arc length of the toroidal

) +

shell, D the shell rigidity, H= 9,(1+a5) the assumed linearly variable

e

vature, and Wp the normal displacement. By some algebraic transforma- -
tion of the solution of equation (111), the following edge coefficients
for the knuckls have been carried out by an IBM 709 digital computer

(see Figure 13).

P M P M2
Wge | -0.44996 | -3 .-0.12913 | -3  -0.782631 | -3  0.14177 | -3

Oge | =0.14402 | -3  -0.26074 | -4  -0.14177 |-3.  0.34484| -4

e 0.10265 | -2 -0.15229 | -3 0.44996 | -3  -0.14402 | -3( )
: ‘ 112

8 -0.15229 | -3 -0.35991 | =&  -0.12913 [-3  0.26974| -4

C
wnere WB' and Wc are alldisplacements shown as Figurs 13.

The edge coefficients obtained. by applying unit shear and unit
moment at the edge of the elliptical head are due to an'approm'.mate
method from Novozhilov [10]. |
le haye

A=Xy P+ L, M,

6 = o(:v.l ’Pz. + o(zl Mz (113)



, with'f?‘_as the second principal radius of curvature of the middle sur-

L2
. where A is the displaceament described by (53)
and
B0 RuvA o,
d“= ‘ E ( ;‘L>181n2¢|
- A j2C1=02) N
c‘:z = o(zl'="' F W f{z Sin C#J"
(114)

_ 413004 [
X R A h

N -

~

face.

The following coefficients are obtained (see Figure 13)

| P, M,

A | 0.43870 | -2 0.79581 | -3 -
(115) -

& | o.79581 | -3 0.39507 | -3

For the whole bulkhead, the edge coefficients may be obtained by

closing the gap caused from the displacements discontinuity with the ap-

. plied edge loading;

—— ———

Fig. 15.--Edge loadings on system b ‘

The numerical quantities accomplished by using a desk calculator

are as follows.



)

L)

b3

2 |

Wge | =0.64845] -3 0.10643 | -3

ogs  =0,10643 | -3 0.25009 | -3

W, 0.21911 | -3 -0.08162 | -3 .
(116)

8¢ -0.09310 |-3 0.17276 | -4

(3) System ¢

The separated parts as V and VII may be considered as finite
beams on elastic foundation. The consideration based on Hetenyi [3j

gives us (see Figure 13)

for part V
P, M,
Wy 0.34931 | -2 10.76637 | -4
S -10.76637 | -k -4.u5286 | -4
Wy 0.17481 | -2 -10.73857 | '
(117)
epe -10.73857 | b | <4 41834 | -4
and for part VII
Py ¥
Vg 0.65431 | -3 0.6k073 | -4
9 -0.64073 | -4 -0.93448 | -5
Wi -0.31111 | =3 <0.57024 | -k '
(118)
O -0.57026 | -4 -0.67161 | -5

2

Part VIII has been considered as a semi-infinite beam on elastic
foundation. The assumed plain cylindrical shell arrived from a conclusion
of section 2.3 leads to the following edge coefficients.

P, i,

Wge -0.2370| -3 0,01780]-3

(119)
Og -0.0178[-3 . 0.00267 | -3
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The quantitiés described in (119) may as well be used for the .
system combined with part VII and part VIII. |
| In order to find the edge coefficients for part VI, it is neces-
sary to £ake V and VI as well as VI, VII, and VIII to be continuity | ‘
pieces. Since part VI is not a shell construction but a beam with lin-lv
early varying thickness which connects the parts VII and V, the applied

unit edge shear or unit edge moment at one end of the clamp cannot estabe

llsh the equilibrium state alone as it does in the case of a shell.

To take part V and VI as a piece, the edge coefficients at F

may be obtained by superposition.

W | @ |
Dl ' £ EI F D/ E E’ F -
A- WWWWW}':I | W &
= | ‘ L = | : X14
D, ' EI F |
""""""" %::l/ (b)
5/@/0/07%////;%:[ l . ///7//7//77777/7//'
X L4 -
, -I-' =4 X|3 3 4+ . o
=
’ Bt
A et ermwmwmj- - «
| |
9‘u=X;3 .’X,;-"Xm

Fig. 16.--Edge loadings for part V and VI

. (a) given state of load
- (b) + (c) equivalent states to (a)

The displacements and rotations are:



4
For case (1)
gy =2 |
103) = Xguy) Xig T X g %
+ LO(gcll) ’X.ulk T 0(.7(,z,>%12 . (120)
¥ ["(X ci2) %12;] 1
and _ ‘ ,
b ,
oéto(ts)'—'" “;ous) X;g ""°(3(u) X 3 | N
+ 003“(,‘7.) X1z Gy
For case (2)
, . .
X q04) = XqQ4) X,4+ Xqa2) Xja
[ xp %z ] f (122)
and )
. m ) , ]
X o(i4) = "Clo ae) Lig+ L geiz) %oz (123)

Where notations, except 7 J and 7‘3/ which denote the edge of-

fects in case (1) and (2), respectively, are the same as used-before.

z il T n : ’
°<-‘i(13) ’ d',o Ga3)’ °¢q§14) » and ¢ o (,4)-.are the quantities

| obtained by considering piece VI as a cantilever beam (p.44 ’).

_ For 0(7(“) , 0(,7(121) , °é8C“) , 0(3(:2) previous computed
numerical values can be used ( equation (117)). -

.' One has to realize that the. offect of rotation at E will cause

an additional displacement at F, which is ingiicated_by

(Oigd,'xr)j | N | | (124)
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Taking X 3= and Xl4_=| s and in accompanying with the solu-
tions for the cantilever beam (Appendix), we have the following edge co-

efficients for the combined piece V and VI.

%903) Xqua| _ To1584 (=3, 2,731 (125)

oljo(3) %o 14) -210399|-3 ~0.454308/]

it is clear that according to Maxwell's theorem |
;(126)

|°<,L(.3$l = | otg G|
still holds. |

For the edge coefficients at E', if one connects part VI with
part VII, the same analysis is true. The thickness of the beanm, howe&er,

will then be

hexy=h, 4 DThe

’ (a2
T |

"instead of the expression formmulated in the previous equations (Appendix).

h, and f\ are the thickness at E' and F respectively, | is the length
of the beam, X the axis with the origin at E' is positive toward the
right hand edge F. Equations derived in the Appendix may be used by
changing some governing terms.

- We have, by taking VII and VIII as a'seni-infinite beam on elas-
tic foundation, the edge coefficients for VI,-VII, VIII tg be a piecé

are:

/ /
Y Kq(i4) —0,4588%1-3 40355713
| 2(:3) q( 0,458 11- 7 (128)

i /-
Kjouz) Xio4) ~0,0355T1-3 o0n72|=3
Finally, for system ¢ | ‘ ‘ |
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Fig. 17.--Edge loadings on system ¢

A
Y

‘-a model of cantilever beams simulating the elastic foundation has been ‘

studied. The rosult is as follows

X9 B T

-0.128 | -3 , 1 0.029 |-3

WD.

(129)
Op -0.029 | -3 0,136 |-

4,3 Temperature curve and the edge effects

The temperature distribution curve illustrated as in Figure 12

comes from experimental resuits. The curve plotted shows that in between

- part V and part VII, due to the construction of the joint, the temperature

changes very rapidly. A substitute analytical curve has been adopted in
the present analysis as plotted in Figure 12, The modified curve shows
goodvagreanent in both the upper cylindrical part and the lower inter-
tank skirt. In the joint portion of part V and part VI, a step function

has been introduced which represents the sudden change of temperature in

the face where the cross sectional area of the shell is a step functiqh

itself across the joint.
The temperature curve as shown in Figure 12 has been divided into
several sections. .It is obvious that different sections introduced by

the temperature curve are conform with the choice of the different sections
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in the intertank construction itself, '

Referring to the coordinate system shown in Figure 11, the tem-
perature equation from the curve fitting'may be obt#ined with a suffi-
clent accuracy as:

For par£ I and II |
T=-275 C°F) 0<% £ 85 (130)

LY

where 7 is the axis shown in Figure 11. .
Further, Sstill in part II
'T:-—aoozzs(1—85)4+006351(1‘&iﬁ*ﬂ75

© o (131)
85 £x <175 -
For part V
= —_ — AN
T=10(x=175)—240, (15 & LT (152)
AT=TICF) at X =2I75 |
where A T represents the jump of the temperature (ses Figure 11).
Ffor part VI ,
T= 000[05 (X=21.75)%= 0,0 474 (2-21.75 )’
+19.429 (X-2175)=T5 , 2175<X <2535 (133)
For part VII ;
T= 000 05 (x—2175 )~ 0,0 474 (X~ 2I75)
(134)

19,429 (X=2175) =15 » 2535 <x 43181

It is assumed that the temperature distribution at part VIII is
7 =110°F (135)
throughout, the effect at this portion to the joint of the bulkhead with

the cylindrical shell is ﬁegligible. 
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The temperature in the parts III and IV (the bulkhead) is constant

throughout and T = =295 (°F).

We shall follow, from now on, the same way as described in
Chapter III, to evaluate the problem by considering the continuity of
each system from the far end up to the gaﬁ 2.

(1) System a '

Sinee the temperatur: curve shows a constant distribution from
X =0 to 8.5, there is no discontinuity in between part‘I and part 11 .
as for both the deformation and bending moinent from the membrane results
are concerned, the system itseclf is closed except at the gap 2.

By multiplying with ol D R, where D is the bending rigidity, o(,
the themal expansion coefficj.ent, R the common radius of the cylindri-
cal shell, the second derivative of equétion (131) leads to the membrane

moment ( ses equation (10) ) °

M= 30% 64[—0.‘0 5736’(1-855)2-— 0.41100»(76-8'5)] (135)
§5<x<115 |
For X =17.5, that is at the right edge of part II.

V= 45952 (2T ()

where positive sense means a compressive effect on the outer fiber of the -

Shell .

By using the edge coefficients from equations(110), (116), (129),

and the solution of equations (93), (9%4), and (96), the distribution of

the unbalanced moment gives us the- following edge loadings.
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g gysfe’"b
e TX;I/
AN

D

Systern a /

_/X:o System ¢

Fig. 18.--Edge loadings at gap 2 from
‘the influence of system a

where moment indicated by dotted line is the intrinsic moment from equa= )

tion (137).
< x3> 2162 3
X, <36936
SRR
-\ %10
X >
<X6 : ( 4182 \)

i

i

S~

- (138)

where énd moment at B is 45932 - 36936 = 8996.

(2) System b
In the se'ni-elliptical bulkhead, the uniform contraction at the

edge B! ‘may be evaluated by using equations (53) and (58)

b
b = (139)
Ago . 0 :
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, We have the following relative displacement and rotation at B
and D'

b
oyo-®30 \ - [—036240
¢ b | = (140)
40~ X a0 —0.0%674 :

Where 0‘31 ’ CKQ; in the functions defined and [ in equa-

tion (90) are zero, since we take the continuous temperature curve

"through part V to part VI as a reference..

The solution of equation (96) by referring to Figure 8 gives us:

(2) - Ga)
(3) - (5
() - (2)

The temperature distribution in the part VII may be rewritten

(141)

(3) System ¢

ass:

" T=000105(Xx=21.75)% 00474 (x-2175 )}

+19,429 (x=-21.75) — 15
(142)

2175 4 2 £ 3789
The second derivative of equation (142) leads to a moment distri-

bution as:
M= 1871 [0,0126 (X-21T5)= 0,284 (x-21.15)]
2535 ¢x £ 3789 3 - (143)
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for X = 37.89, that 1s at the right edge of part VII;

M, =—10263 (-l&=in) o aw

where negative sense means a tensile effect on the outer fiber of the -

" shell.

The distribution of this moment at gap 6, X = 37.89, gives us

- - - B - ﬁJ N
Mo Xl5/ "
~ \ .
| [ ) | —
lié, ng

Fig. 19.--Distribution of the unbalanced moment at gap 6
X16 - 4y 2
X +416
< 15> < > (145)
Xlé 5821 :

Edge loadings Xi5, X6 will have an influence on the displace-

<
. -0.41032 | -2

°€;O\> = ! /> (146)
0 -\ -0.81428 [ -2 .

The continuity temperature distribution has the equation across

ments at edge P'.

the Joint of part VI and VII
T =0, 00105(%-51.75) -0 0474( K ~21 75)3
+19.429(7 -21.75)=75

(147)
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second derivative leads to

T = 0.0126(% =21.75)2-0,284(% ~21.75) (148)
by substituting X = 25.35 - |
o't -0.85910 e | (149)
knowing that for the beam o
~ o N
: C 2
/ 2 W ~
~ = . (150)
where EI is the variable bending rigidity of the bean,
and W = °<R,o :0'6_7612 » the displacement of the beam.
Finally, we have the intrinsic mambrane moment at F
Mg = -5275 (in-1b/in) - (151)
where negative sense states tensile stresses of the outside fiber.
| For the edge of F' we have
_/'1 .zzT
M'F’ =D - °<' Rvo
X :
(152)
= 6767 (in-1b/in)
Hence we have for gap 5 the unbalanced moment
Mg = -5275-(-6767) = 1892 (in-1b/in) (153)

) \The continuity of .the joint may be obtained by applying the
- moment which equal to the unbalanced one but with different sign.

This gives us:

- ’ - . - - - - T ﬁ) ' St
' Lia x4 o R
MF\\ | _ MF/ » 0/‘3“\
/

| . |

« ' ’/’ p QJ é W |
: . . ” . \ '
X Xy

Fig. 20.--Edge effects at gap 5
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X3 _ 34 N o
X 3 S
o)L ()

where the moments indicated by dotted line are understood to be the

intrinsic moments obtained in equations (151) and (152).
The iqfluence of these applied shear and moment at F in order to
restore the continuity of gap 5 give us the displacement and rotation at

D*.

_ c S . '
& 3.35115 | -2 ,
30 _ :
: > = > (155)
A 4o 0.17254 | -2
For cut E, E' the relative displacement and rotation obtained

from the consideration of the jump of temperature and the slope differ-

ence of the right hand edge and the left hand edge temperature curves

ares . v
/ .
o — X 70 0.33200
e = . (156)
X5 4. -0,02427
The gap may be closcd. by introducing the edge moment and edge
shear:-

; - - - f—

— -i;l> 4.<15:__——_—— . ‘~} g
T D
| X, Zu

Fig. 21.--Edge loadings at gap & from the influence of
‘ the step function of the temperature distribution
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X 2Li5
< 1 ) = ( > | (157)
Xy -611

where

Edge loadings Xll,and X12 will cause additional deformations at

c<§a 0.22784
< ‘ < | (158)
K40 / 0.00686 . -

The di'splacements obtained as (146), (155), and (158) at D' give

edge D' as:

the edge effects at gap 2

- - - - - <’
Xé
K;’ )& o W :
3\_//X'°

Fig. 22.--Edge loadings at gap 2 from the
influence of system ¢

which Has a solution
; X3 > ) < 1”9;)
Xu‘ o4
- x9 > 243 >
X0 563

B (159)
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Finally, tho resultant of the edge loadings at the joint of the
semi-elliptical bulkhead and the cylindrical shell are as the following

by using the same figure as Figure 5.

X i
<:<4 > |
)

%

o)

X307/

(160)

I

T~ TN T
5 o
w0
& O
~—

1393 >
4724

‘Where at B, the intrinsic moment MB = 45932 has been added in X&'

Few words must be added here, since one may have the question
about the quantities of the edge effects in gaps 1, 3, 4, 5, and 6, for
restoring the continuity of gap 2, considering each system as a continu-
ity piece. It is easy to see that, in obtéining the edge coefficieﬂts
at 3, B" and D' by considering each system to Se continuity piece, the
unit edge @oment and edge shear applied at each edge of B, B' and D'
will arrive the edge effects at each interior joint. Taking these as
factors, the final value of the edge éffects at each interior joint may
then bé obtained by multiplying with the resultantuedge moment anc edge
shear as shown in (160) (For Xy, the quantity will be 27363; this is
so-called edge effect.),‘and by summing up the result from closing each
of the previous considered gaps. ;

For a clear view,.one may refer to Figures 23, 25, and 29, where
the edge effects at each interior joint for fhe appropriate unit edge
moment, edge shear, or distribution moment are obtained for the moment

curve. Since membrane stresses 0\;} = 06 = 0, the superposition
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(c.f.p. 3) leads to the sum of the stresses from the edge loads. The

firal result in terms of the stresses are plotted according to these
moment curves.

We neglect circumferontial stresses because (1) membrane 6‘5=o

(2) 05 = V0x
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0> Mao, Mma /— \\
(l':»./}n‘) | / \\
n

=+

B 5 1o 15 & 25
= X (in)
| System O
[ ]
z Mo Y‘Qo
Fig. 2l4.--Bending strosses in the

upper cylindrical pari for

Wi

o
‘Ao ~
& =1
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St

. analysis as far as the intertank as a whole is investigated independently.l

CHAPTER V

DISCUSSION AND CONCLUSION

The theorstical analysis of the present work lies within the
range of the linear theory of thin shells. This theory is based dpon
the assumption [}O]

& | | | (161)
T |
0] % Zo

where é‘ is the wall thickness and R,z ‘.bhe secoﬁd principal radius oi-“
curvature of the middle surface. ~

The above ratio, as may be seen from the example of Chapter IV,
is satisfied. ' |

Due to the fact of large temperature variation, other assumptions
such as tho displacements at a point be small in comparison with the
thickness of the shell is no longer as rigid as it should be. However,
one ha§ to bear in mind that the present temperature distribution may
occur only in accompanying with the internal pressure loading. The ef-
fect of the latter diminishes the displacements obtained in the case of
thermal loading. The linear assumption, as well as the theoretical anal-
ysis of the present investigation, is then vaiid for most problems in the
sane manner.

In our example, the boundary condition.has Seen taken to be free
of constraintfat both ends. It will be, of course, sufficieht in an

.The resultant stresses as shown in Figures 25, 28, and 31 have —

67
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. not only the common points of maximum stresses with those from an inves-
tigation of the pressure loading, but also the final result, plotted as
in FMigure 28 shows that the .hermal stresses considered in the present
case have a release effect on the stresses from the pressure loading in
the knuckle of the bulkhead. This is important, since the knuckle part

will reach the yield point first for internal pressure.
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The displacénent and rotation of the cantilever beam (Figure 14)

nay be obtained by considering the linearized theory of beams.

Pl
7
i

- .

>
Q

—_]

MWW

'

|
'\
/i\
£
W

Fig. 32.--Part VI as cantilever beam

Let
f'\o be thickness of the beam at E°'.
h be thickness of the beam at F.

f be length of the cantilever.

X be horizontal axis, positive sense to the left with F

as origin.

We havs

(1) For My =0 '
MzPOx L} and i
‘ _ __. h-he 3
I-% [ “ ]

70

i

 (162)

(163)



equation (162) may be evaluated exactly.

T T e

E( bR 2k Ry

£ ]

Let <7

h=he = g
" we have
) C, = 12 Po | - I‘\
l Eal ko ( ZL\O)
and
. _ 12 Po C _ h _ l + —
R e L (- 2m) ™ Toax Z(h-w)‘]

- TFor the displacement

LV& J~ er d Wf) dx + CL
= [* B, dn +

by substituting with (166), this may be evaluated

ho

W= :z,?.[ ’ “"Z%,TI)’“‘ _o'riaﬁ“*"““)*

Ea

1o h
+ A z(;,:-cwc)}'1r G

 for X =1 y w=20

71

(164)

(165)

(166)

(167)

(168)
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we have
_ 12 P !
Co =~ 5 I U™ u\,)f"'a ”"7;’+ ] (169)
hence
12 Po | - h _L h'ﬂ%
W= g [y (Rt g
+—Lh(’—’) O (170)
& % "p-gr ho }
(2) F&r P, =0,
M=‘M0 ] ahd
, |
- Ch- ) - (171)
- IL<h a% : .
we have.
%

| Mo
8'x=j\o EI W+ G

e (R o am)
E 4 (h-axy

the integration may be carried out

oM. | ‘ |
= +
for X=f , =0
we have o
¢ =- L LM | a7

_ E (/:"‘/)o)/'lo



hence

_ 6Med a =

X E(h-h) L(h-art  he

For the displacement

X
- Wy = j 62{ dx + (,

o

by substituting with equation (175)

We have

W¥=6£Mo d - }"¥J+Cz.

E (h-ho) [(;\—ax)(h—ho) h

for =0, wW=9¢

wWe have

- Gf/vfa j‘. ~ y,
Cz E(}]-ho) [l\o(}\'ho) /10]

finally

6IMe U J
Wy = -
’ E(h=hs) [h‘ho h—ax

- ;i ("-@}

.73

- (175)

(176)

(177)

(178)

(179)
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